

THE FRENCH NUCLEAR EXPERIENCE IN THE POLISH NUCLEAR ENERGY CONTEXT

THE EPR REACTOR: SAFETY, LOCALIZATION, CONSTRUCTION, EXPERIENCE FEEDBACK

Patrick ZAK Director Pre Development and Marketing EDF New Nuclear Projects and Engineering

Poznan– ExpoPower – 23 April 2018

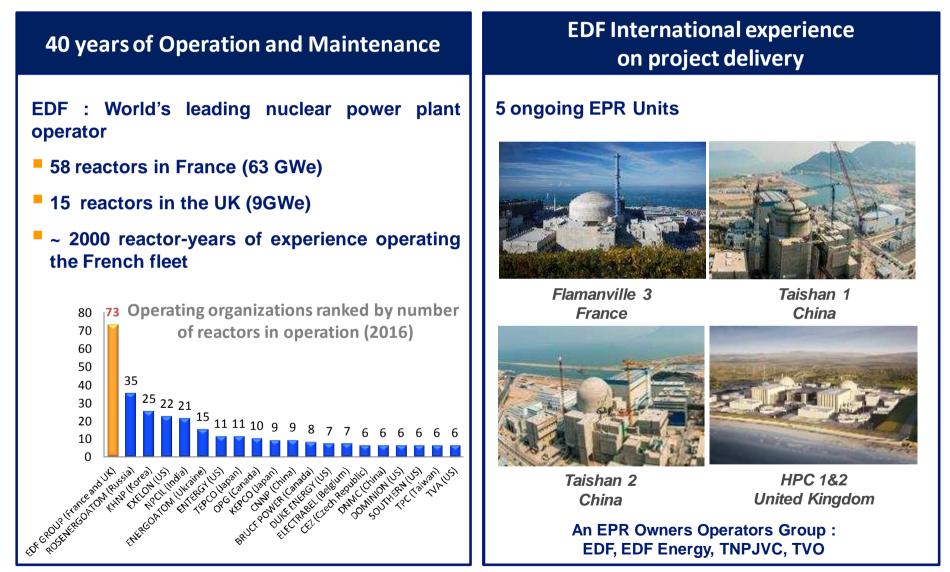
CONTENT

1. EDF Group company profile

- 2. The EPR reactor and the current projects
- 3. Hinkley Point C NPP project
- 4. Feedback from current EPR projects

EDF GROUP KEY FIGURES OVERVIEW

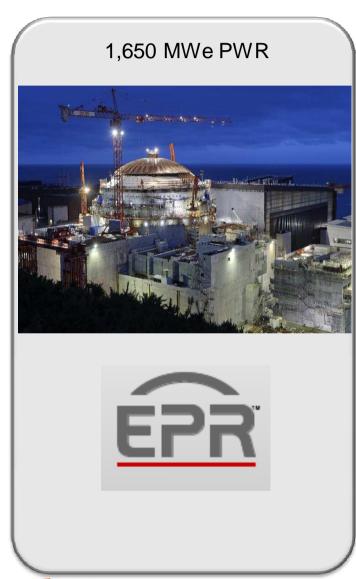
EDF produces around 22% of the European Union's electricity, primarily from nuclear power


FRENCH NUCLEAR LANDSCAPE SOCIO ECONOMICAL BENEFITS

Expopower Poznan | 23/04/2018 | EDF© Copyright | 4

DESIGNING, BUILDING, OPERATING AND MAINTAINING THE LARGEST FLEET WORLDWIDE

CONTENT


1. EDF Group company profile

2. The EPR reactor and the current projects

- 3. Hinkley Point C NPP project
- 4. Feedback from current EPR projects

THE EPR REACTOR

- Generation III+ PWR
- High power output (1,650 MWe)
- Plant efficiency 36%
- Evolutionary design (Konvoi / N4)
- Low global power generation costs
 - Fuel consumption reduced by up to 15%
 - 60 years of operation
 - Availability factor 91%
 - Improved flexibility to reduce OPEX
- Load following capability
- Reduced number of welds
- Maximized benefit from size effect
- Minimal environmental impact
- MOX Fuel capability
- Reactor being designed in collaboration with utilities and safety authorities
- EUR criteria compliant
- An outstanding safety level...

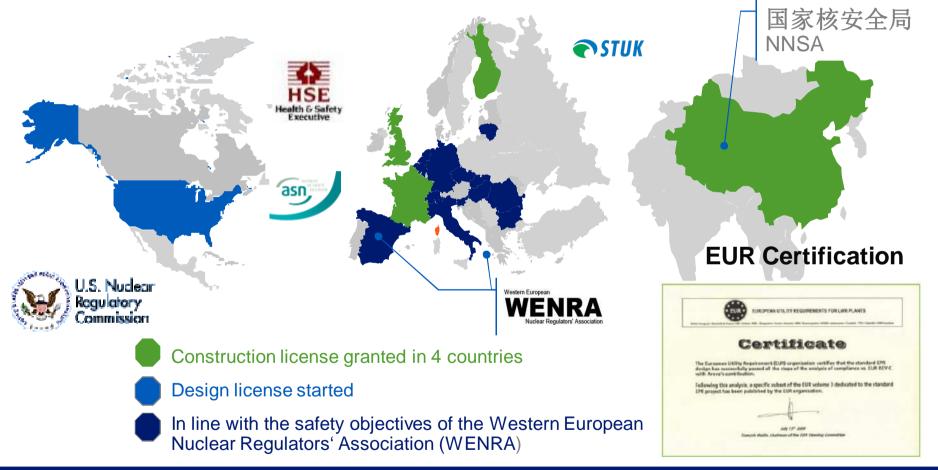
STATE OF THE ART IN TERMS OF SAFETY

Reduce the probability of a severe accident with core meltdown

Physical separation, diversity, and redundancy of critical components – 4 safety trains

Protect population and environment in case of severe accident

Confined corium and radioactive products in the reactor ("core catcher") – Deterministic approach


Protect against malevolent act (e.g. airplane crash)

High structural resistance – Double shell containment

A DESIGN ALREADY ASSESSED AND LICENSED BY VARIOUS INDEPENDANT BODIES AND SAFETY AUTHORITIES, WORLDWIDE

A smoother licensing phase supported by experienced team involved in numerous licensing contexts

40 YEARS OF FRENCH KNOW HOW TRANSFER AND LOCAL INDUSTRY DEVELOPMENT

Areas of support		Knowledge and learning sharing	Examples
Skills development	40+	years of successful human capacity building guidance and cooperation with fellow countries since 1970's.	@ 🍃
Localization	45y	years of local industries development, both NPP (engineering, manufacturing, and construction) and fuel cycle – through technology transfer and skills development, including R&D support, to create high quality jobs locally.	
Education and training (all types)	55+	partnerships with top universities worldwide. set up of joint training centers.	
NPP operation	850+	trainees from foreign operators trained over the last 30 years.	
	346	reactors supported, out of the 435 in operation (i.e. 80% of nuclear global fleet), with products and services.	ē

FLAMANVILLE 3: THE EPR REFERENCE PLANT

- EPR Reference Plant
- First EPR reactor in France
- Largest Project in Northern Europe
- Power output : 1,650 MWe
- EDF as Owner & Operator

September 2015 New schedule Palisage mecaniques de riccuit primies	August 2017 Cold Test Nuclear circuit cleaning			End 2018 First fuel loading and start-up operations to begin		
CURRENT STATUS			SCHEDULE			
March 2016 Welding of 1 st Primary	Circuit	End 2017 Cold functional test	July 2018 Hot functic	onal test	2 nd Quarter 20 Connection to	-

TAISHAN 1 & 2: ACCELERATION IN THE EPR LEARNING CURVE

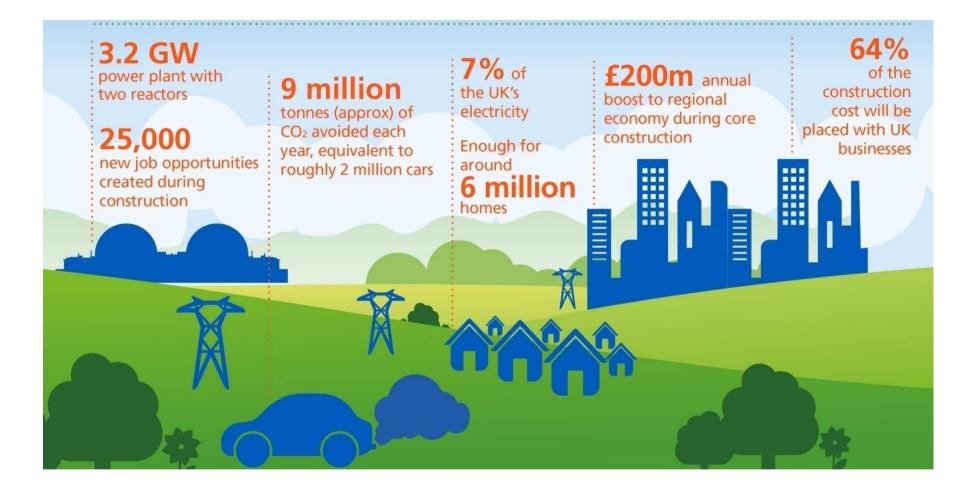
- The first two EPR reactors in China
- Power Output : 1,750 MW each
- EDF as co-Owner-Operator with renewed partnership
- Tropicalized to adapt to the country's climate

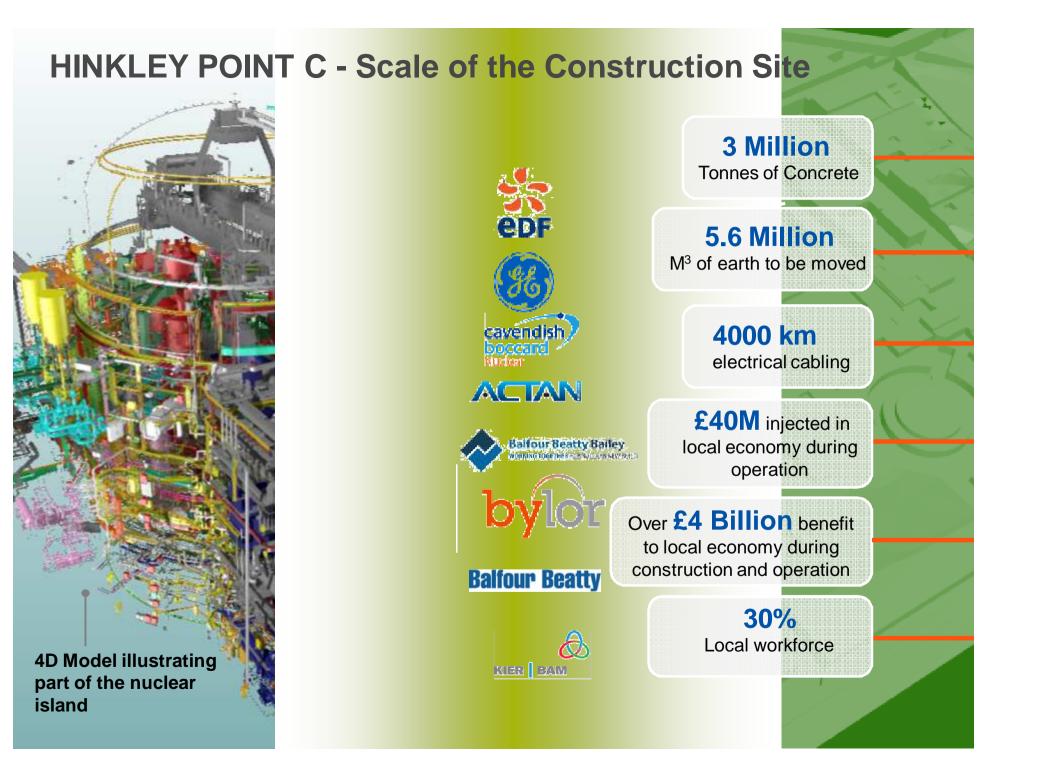
July 2017	Second half of 2018
End of Hot Functional Tests	COD Unit #1
CURRENT STATUS	SCHEDULE
April 2018	Second half of 2019
First fuel loading	COD Unit #2

CONTENT

- 1. EDF Group company profile
- 2. The EPR reactor and the current projects
- **3.** Hinkley Point C NPP project
- 4. Feedback from current EPR projects

HINKLEY POINT C 1&2: CONFIRMING EPR AS THE REFERENCE IN EUROPE


- First nuclear construction project in the UK in 30 years
- GDA certification process
- Reference plant EPR Flamanville 3
- Contract For Difference guarantying a fixed price of electricity for 35 years
- Partnership with CGN as co-owner
- Power output : 1,638 MWe each


	Septem Final cor			2019 FCD Unit #1		2026 COD Unit #2
CURRENT STATUS		SCHEDULE				
October 2013 UK Government agree Cont For Difference for HPC	ment agree Contracts First nu		h 2017 nuclear safety concrete successfully ed for power station galleries		2025 COD Unit #1	

HINKLEY POINT C Key figures

HPC INSPIRING INDUSTRIAL COLLABORATION

CONTENT

- 1. EDF Group company profile
- 2. The EPR reactor and the current projects
- 3. Hinkley Point C NPP project
- 4. Feedback from current EPR projects

LESSONS IMPLEMENTED AT HPC

Configuration

• End of construction topographical surveys with data compared with PDMS model and results made available to all parties

Mechanical, Electrical and HVAC Erection

• Development of new contractual arrangements and collaborative one-team ways of working

Civil Construction

- 3D design of rebar and solving of embedment clashes before models frozen
- Use mock-ups to trial techniques, test arrangements and competencies, test interfaces
- Modular construction of rebar cages, floors, walls and pool liners

Data-centric Approach

• Development of a central electronic depository for all project information to support commissioning and operation

MEH INTEGRATION MODEL – THE CHALLENGE

Hinkley Point C:

- Construction schedule is challenging
- Scale and complexity is unique
- Delivery needs world-class productivity, room occupancy and daily progress rates
- Delivery needs a different way of working
 - New organisational and contractual arrangements
 - New methods, tools and systems being developed, including configuration capture by one consolidated 3D topographical survey

CONCLUSION

- EDF is a strong player on the world's nuclear market Operates the biggest fleet in the world
- The EPR is a robust design, EPR will keep the owner-operator on the safe side
- The EPR world wide fleet is being born
- Ongoing construction projects are getting to end, no project has been stopped
- EDF long standing experience as a nuclear operator guarantees that the phasing from construction to operation will be managed smoothly and efficiently (derisk of fuel loading clearance after construction)
- Improvement slope is a fact in all fields (engineering, fabrication, construction, PMO)
- Systematic lessons learned implementation in new project is industrialized Implementation on the biggest construction site in Europe at Hinkley Point C
- The level of confidence regarding capability to deliver future projects on time and on budget is high
- Polish EPR will be the 7th and 8th a the EPR world series

Expopower Poznan | 23/04/2018 | EDF© Copyright | 22