EXPOPOWER Fair 2018 in Poznan, Poland

Major Characteristics of EU-APR

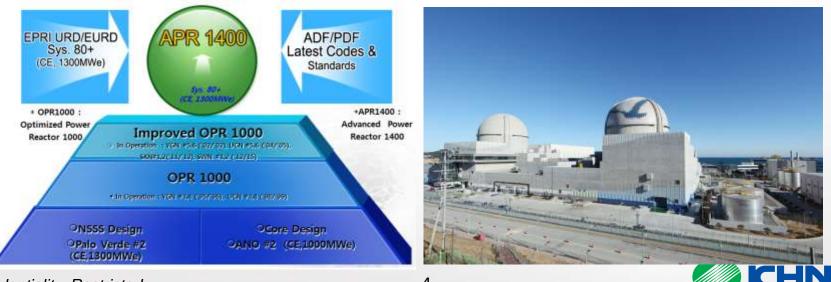
Apr. 23, 2018

1 Introduction

2 Overview of EU-APR

3 Major Characteristics for EU-APR

4 Closing Remarks


Introduction

1. Introduction (1/4)

APR1400, the reference plant

- Evolutionary Type ALWR based on OPR1000 and System 80+
- Standard Design Certificate (May 2002) after 10 Years of Development

	Under Construction	Operating
Domestic	SKN #4(Aug. 2009 ~) , SUN #1,2(Jul. 2012 ~) SKN #5,6(Apr. 2017 ~)	SKN #3(Dec. 2016 ~)
Oversea	BNPP #1,2 (Jul. 2012 ~), #3,4 (Sep. 2014 ~)	

Confidentiality: Restricted

1. Introduction (2/4)

Design Criteria of APR1400

- U.S. Regulations
 - ✓ U.S. 10 CFR 20 (Radiation), 50 (License), 100 (Site), etc.
 - ✓ U.S. NRC Regulatory Guides, Generic Letters, Bulletins
 - ✓ U.S. NRC Standard Review Plan, NUREG-0800
- U.S. NRC Policy Issues
 - ✓ SECY-93-087
- U.S. Codes & Standards
 - ✓ ANS (Safety Classification), ASME (Mechanics), ASTM (Material),
 ACI (Concrete), NEFA (Fire), IEEE (Electricity and Instrument), etc.

1. Introduction (3/4)

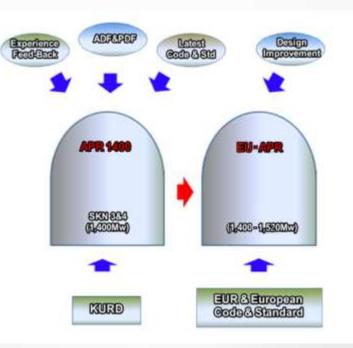
Safety Goals of APR1400

- Core Damage Frequency < 1.0×10^{-5} RY (Actual: 2.25×10^{-6} RY)
- Containment Failure Frequency < 1.0×10^{-6} RY (Actual: 2.84 × 10^{-7} RY)
- Seismic Design Basis: 0.3 g
- Performance and Economy of APR1400
 - Power: 1400 MWe (Net Electrical Output) / 4000 MWt (NSSS Capacity)
 - Plant Lifetime: 60 years
 - Refueling Cycle: 18 months with UO₂ fuel

1. Introduction (4/4)

Proven Design Features of APR1400

- Direct Vessel Injection(DVI) with Emergency Cooling Barrel Duct(ECBD)
 - ✓ Eliminating the Safety Injection water spillage during LB LOCA in cold leg
- Fluidic Device in Safety Injection Tank (SIT)
 - ✓ No need of LPSI pumps by regulating the SIT flow passively
- In-Containment Refueling Water Storage Tank (IRWST)
- Fully Digital Man-Machine Interface



2. Overview of EU-APR (1/3)

● What is EU-APR[™]?

- Modified version of APR1400 to comply with European safety and performance requirements
 - ✓ Key design features of APR1400 + design improvements
- Design Philosophy of EU-APR
 - Enhanced Defense-in-Depth (DiD) Approach
 - Simplified Plant Design
 - Sufficient Design Margin
 - Proven Technology
 - Human Factors Engineering

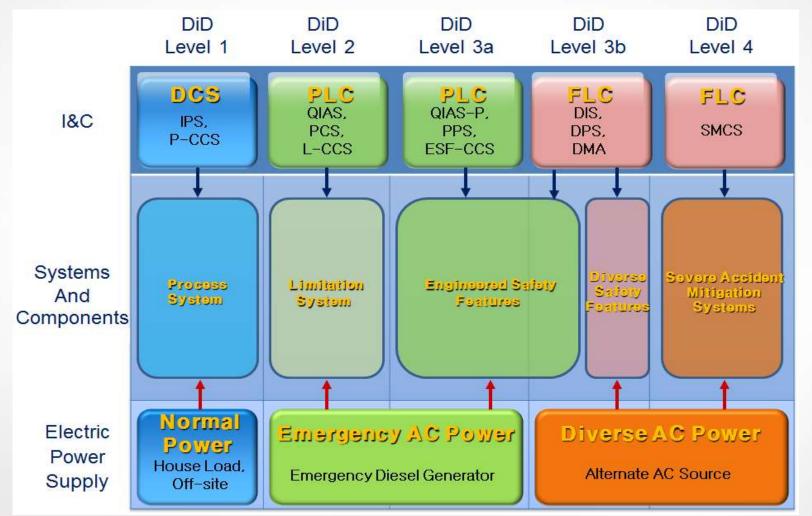
2. Overview of EU-APR (3/3)

Comparison of APR1400 Series

Parameters		APR1400	EU-APR
Design Criteria Base		10CFR, NRC RG	IAEA, WENRA, EUR
Metrication		British	SI
Frequency		60 Hz	50 Hz
Codes & Stds	Mech.	ASME	ASME, EN
	Elec./I&C	IEEE	IEC
	QA	ASME NQA-1	IAEA GSR Part2, ISO
Acceptance Criterion for limiting DBC(LBLOCA)		250 mSv/2hr (TID-14844)	5 mSv (RST)
Redundancy of Safety Systems		Mech. 4-train Elec. 2-train	Mech. 4-train Elec. 4-train
Aircraft Crash Protection Design		Exclusion due to low APC Probability	Double Containment, Reinforced Aux. Bldg
Severe Accident Mitigation Systems		SAs Dedicated Sys. + DBC Mitigation Sys.	Dedicated Systems for SAs
I&C Architecture		2-platform	3-platform
identiality: Restricted		- 10 -	CHNF

Confidentiality: Restricted

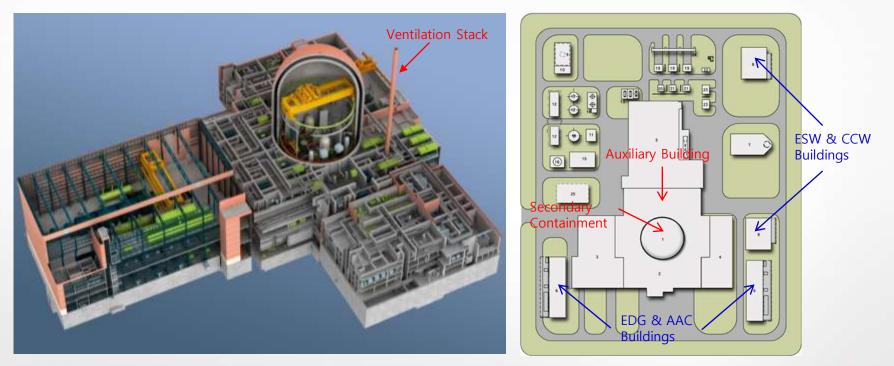
2. Overview of EU-APR (2/3)


Functional DiD Concept

• WENRA RHWG, "Safety of New NPP Designs", 2013

Level of DiD	Objective	Essential means
Level 1	Prevention of abnormal operation and failures	Conservative design and high quality
Level 2	Control of abnormal operation and failures	Control, limiting and protection systems and surveillance
Level 3	Level 3a: Control of Accidents within	Engineered Safety Features
<	the Design Basis <u>Level 3b</u> : Control of Design Extension Conditions	Diverse (Additional) Safety Features
Level 4	Mitigation of Severe Accidents	Dedicated (Complementary) Safety Features
Level 5	Emergency preparedness	Off-site emergency response

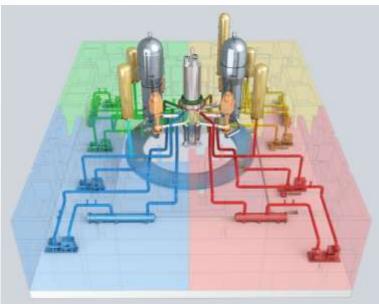
System Architecture

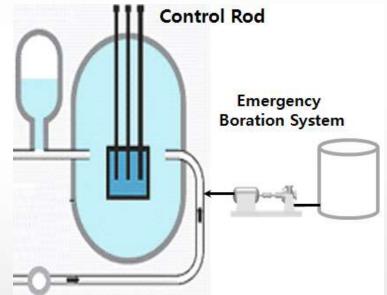


3 Major Advanced Design Features of EU- APR

3. Major Advanced Design Features (1/4)

- Secondary containment and reinforced or physically separated arrangement of safety buildings against intentional airplane crash
- Stack to monitor discharged gas in the integrated manner and to enhance dispersion of discharged gas

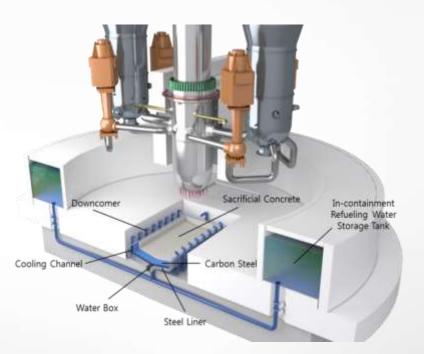

3. Major Advanced Design Features (2/4)


Redundancy

- N+2 Design : SC-2 systems to mitigate DBC 3 & 4 accidents
- N+1 Design : SC-3 systems to mitigate DBC2, DEC and Severe Accidents

Diversity

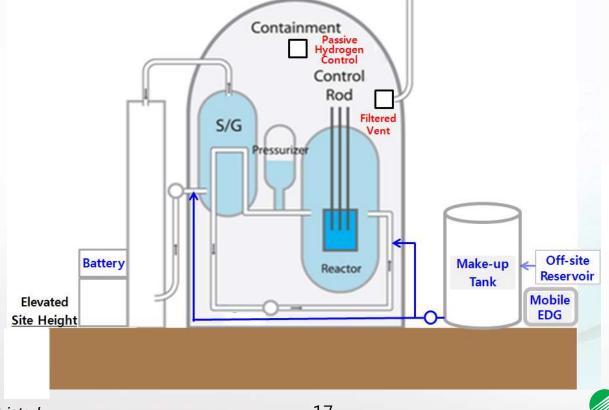
 System or component level alternative measures against CCFs of systems performing safety functions in the event of DBC2 & DBC 3



Confidentiality: Restricted

3. Major Advanced Design Features (3/4)

- SAs dedicated mitigation systems to preserve the containment
 - integrity independent of safety systems for Design Basis Conditions


System	Function
Passive Corium Cooling System	Preventing interaction between molten core and pressure-bearing materials of the containment
Emergency Reactor Depressurization System	Preventing high pressure molten ejection
Containment Spray System	Preventing containment over- pressurization
Passive Hydrogen Control System	Maintaining hydrogen concentration in containment below 10 v/o
Instrument System	Monitoring status of plant condition
Electrical System	Supplying power to SAs dedicated systems by using battery and AACs

3. Major Advanced Design Features (4/4)

- Reinforced waterproof function against external flooding
- Protection designs against loss of electrical power & ultimate heat sink
 - External injection paths for emergency cooling of RCS, SG and SFP
 - Mobile generator, capacity-reinforced and flood-protected batteries

Confidentiality: Restricted

4. Closing Remarks

EU-APR is customized for the European markets

- Adopting new safety features with enhanced DiD concept
- Considering recent licensing issues (aircraft crash, Fukushima accident)
- Complying with European requirements and environment
- Major Characteristics in nuclear design
 - Structure
 - ✓ Double containment design
 - ✓ General Arrangement based on physical separation
 - System
 - ✓ Fully 4 Trains design for important safety systems
 - ✓ Diversity design for reactor shutdown and decay heat removal
 - ✓ Dedicated Severe Accident mitigation systems

THANK YOU

